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MODELING OF INTERFACIAL FRACTURE IN INCOMPRESSIBLE MATERIALS WITH VARYING
MODULUS MISMATCH'

T. C. Miller
Sparta Incorporated
2 Draco Drive, Edwards Air Force Base, CA 93524

ABSTRACT

Numerical modeling is used to evaluate the effects of modulus mismatch on interfacial fracture. Different
modulus ratios are considered, as are different mode mixities. The magnitudes of the complex stress intensity
factors are evaluated using the energy domain integral approach, and the phase angles are measured using
extrapolation of bond line traction data to r = 0. The results indicate that moderate changes in the modulus ratio
have only a small effect on either the magnitude or phase angle of the complex stress intensity factor. These
predictions confirm earlier experimental conclusions and suggest that the elastic mismatch is not a strong factor
in determining the interfacial fracture of plane strain incompressible materials.

INTRODUCTION

The use of fracture mechanics to assess and predict crack development in solid propellants has led to cost
savings by enabling better service life predictions for solid rocket motors. Both linear elastic and elastic-plastic
fracture mechanics concepts have been used to predict crack propagation in solid propellants. A frequent site for
the initiation and growth of cracks in solid rocket motors is the interface between the propellant and the rubber
liner. This study examines this situation, namely, that of an interfacial crack lying between two incompressible
materials and subjected to plane strain.

A previous experimental work examined 2 similar situation.! Both homogeneous and bimaterial specimens
were considered. In bimaterial specimens, the elastic moduli of the two materials differed by a factor of two.
Additional results also indicated that larger differences between the two elastic moduli had little effect on the
complex stress intensity factor.

The modulus ratio, E/E,, depends on the materials used in the motor, and different values need to be
considered. Typically, the stiffness of the propellant will exceed that of the liner by a factor of about 3. If it
can be established that this ratio only weakly affects the complex stress intensity factor, then computations for
interfacial cracking of different motors can be combined in a simplified analysis. The present work uses
numerical methods to vary E,/E, from 1 to 6 to study this issue.

o DISCUSSION
FIELD EXPRESSIONS

Figure 1 shows a crack and corresponding coordinate system lying along an interface between two distinct
linear elastic isotropic materials. If the materials are both incompressible and plane strain conditions exist, then
the bimaterial parameter, €, normally associated with interfacial cracks, vanishes. This is a degenerate case of
the more general interfacial cracking problem and it has field expressions that closely resemble those of cracks in
homogenous bodies subjected to mixed mode loading. One consequence of the vanishing of ¢ is that both the
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phase angle (¥) of the complex stress intensity factor (K)" and the ratio of stress components o, and O, along
the bond line are invariant with respect to distance from the crack tip and are related:’

i¥
- K - X (1)
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Here K is the complex stress intensity factor, and can be expressed in either rectangular or polar form (i.e.,
K = K, + K, = Ke'¥). This expression holds in the near tip or asymptotic region, where the term with the '
singularity eclipses the other terms in the Williams expansion.

Also, J, the contour integral, and K, the magnitude of the complex stress intensity factor, are related through
an effective plane strain modulus:
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Because v, = v, = 1/2 for incompressible materials, additional simplifications could be made. More general
expressions for stress and displacement components in the near tip region have been derived?, but for this work
only egs. (1) and (2) are needed.

NUMERICAL MODELS

A typical finite element model is shown in Fig. 2. The geometry of the numerical models simulates the
experimental specimens from the related photoelastic study. The specimens are glued to aluminum grips, which
are free to rotate when loaded. Mode mixity is varied by changing the crack orientation with respect to the
mode I loading direction. When the crack is oriented horizontally, mode I loading takes place and K;; = 0.
However, as the crack orientation angle o varies, the mode II component becomes increasingly significant.

Crack orientation angles of 0°, 15°, 30°, and 45° were studied in both the experimental and numerical work

so that fracture under different mode mixities could be studied (the corresponding mode mixities vary from about
0° to 30°). The numerical models also allow for a range of modulus ratios: E,/E, = 1 (a homogeneous -
specimen), as well as E/E,= 2, 4, and 6.

One other noteworthy aspect of the models is the use of hybrid elements. The use of incompressible
materials in plane strain causes an indeterminacy due to a vanishing of a term (1-2v) that appears in the
constitutive equations. This results in a singular global stiffness matrix. The problem is resolved by using a

hybrid formulation. In this formulation, the hydrostatic portion of the stress tensor is used as a solution variable
in addition to the components of nodal displacements.**

*Throughout the text, boldface type is used to indicate that a symbol represents either a complex or vector
quantity.



DETERMINING FRACTURE PARAMETERS FROM NUMERICAL DATA

The primary results from the finite element analysis are the nodal displacements. Secondary results such as
stress components are obtainable with derivatives of shape functions, material properties, and nodal
displacements. The displacements, stresses, and strains are used to determine both the magnitude and phase
angle of the complex stress intensity factor, K. Evaluation of the phase angle, ‘¥, is accomplished using eq. (1).
As this equation shows, tan’(c,,/o,,) along 6 = 0° and inside the near tip zone is equal ¥. The value of ¥
can be estimated from stress data by evaluating o,, and o, along part of the bond line near the crack tip and
fitting 2 polynomial curve to the data so that tan’'(c,/c,,) is a function of r. The constant term of this
polynomial corresponds to tan’'(g,,/c,,) at r =0, and is an estimate of Y.

This regression method has been used previously with similar numerical models and compared with
corresponding experimental data with good results.’ Linear elasticity requires that o, and o,, be continuous
across the bond line, but there is not exact continuity in the finite element results because of their approximate
nature. In practice, the stresses at a node on an element are extrapolated from the Gaussian integration point
values. Then, for stresses at nodes on the bond line, the mean of the results for each element is determined for
use with the regression analysis.

Equation (2) is used to determine K, the magnitude of the complex stress intensity factor, by first evaluating
J. The parameter J is found because of its ease of evaluation in numerical models and because of its robust
nature. In this work, J is evaluated using the domain integral method, which uses the Gauss divergence theorem
to convert the contour integral to an equivalent area integral. The area integral is then found using results for the
field variables of the elements that the area contains. The value of K is then found using eq. (2). Previous
experience with this method of determining K has also indicated good agreement with existing experimental

data.*®
RESULTS

Crack orientations of 0°, 15°, 30°, and 45° were considered. Elastic modulus ratios of 1, 2, 4, and 6
were used to test the effects of relative stiffness. The top portions of the specimens always have E = 2698 psi
(18.60 MPa), corresponding to the stiffness of a photoelastic polymer used in related experimental work. The
moduli of the lower portion of the specimens were varied to change the modulus ratio. Loads of 5.25 Ibs. (23.4
N) were applied to the aluminum grips, giving a nominal stress of 7.00 psi (48.3 kPa).

Figure 3 shows the variation in K with E,/E, for all crack orientations. As E,/E, is varied from 1 to 2,
clevations in K of 15-17% occur. However, changes in E,/E, above this level have little effect on K. Similarly,
Fig. 4 shows the variation in ¥, the phase angle of K. As Ey/E, changes from 1 to 2, ¥ changes by 4° in the
worst case (i.e., for a crack orientation of 0°). Variations in the phase angle are smaller as E,/E, changes from
210 6.

The results suggest that for elastic modulus ratios from 2 to 6, the value of both the magnitude and phase
angle of K vary only weakly, so that K depends on the remote applied load, the orientation of the load relative
10 the interface, and the crack length. This is important because propellant material properties such as modulus
vary among propellants, and vary significantly even for identical formulations. Because the propellant is a mixed
particulate composite, homogeneity of the cured cylinders is difficult, causing differences in the material
composition within cylinders of propellant. Also, differences in the material properties may occur near the

interface due to diffusion of the two materials during the manufacturing process.

The primary reason for the weakness of the E/E, effect is that the modulus mismatch causes large changes
in o, only, with only small changes in o,, and ©,,. This is shown in Figs. 5-7, which show the stress
components for a specimen for the four different E,/E, values tested. In the absence of a crack, the mismatch
causes a differential contraction of the two materials as the specimen is loaded, giving O, values that are tensile
in the more compliant material and compressive in the stiffer material. This effect is shown in Fig. 8, which
plots O, vs. y as the bond line is traversed for a specimen with E,E, = 6. The data is taken from a cracked



specimen, but from a part of the specimen that is away from the specimen boundaries and from the crack tip.
Near the crack tip, this differential contraction field is superimposed on the stress fields for the crack tip. The
o, values thus change substantially with E,/E,, whereas Gy, and o,, do not.

Since ¥ relates to 0,,/C,, in the near tip region, O, does not affect ¥. Changes effected in ¥ by altering
relative stiffness are induced by small changes in shear stresses in the near tip region. A similar effect occurs
with the magnitude K or with the value of J (since they are related through eq. (2)). Here, o,, is a traction
component along the contour that defines J, with the oy, contribution due to differential contraction being a
function of y. This traction component makes equal but opposite contributions to different parts of the contour,

so that no net increase in J is produced.

SUMMARY AND CONCLUSIONS

Cracks along interfaces between incompressible materials under plane strain conditions exist in solid rocket
motors and have a bimaterial parameter € = 0, which simplifies the field expressions for the cracks. The phase
angle of the complex stress intensity factor can be determined from numerical results using bond line traction
data. The magnitude of the complex stress intensity factor can be determined using J integral determinations.
For a variety of mode mixities, it was found that neither the magnitude nor the phase angle varied significantly
as the modulus ratio for the material combinations varied from 2 to 6. More substantial changes took place as
the modulus ratio was varied from 1 to 2. For most combinations of propellant and liner used in solid rocket
motors, the magnitude and phase angle of K are functions of loading, geometry, and crack length, and are not
strongly influenced by the relative stiffness of the propellant and liner.

LIST OF SYMBOLS

.E Young's modulus

J ] integral value

K magnitude of the complex stress intensity factor
K complex stress intensity factor

g bimaterial parameter

v 'Poisson's ratio

Oyx » Oxy » Oyy in-plane stress components

g phase angle of the complex stress intensity factor
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Fig.

1 - Geometry of an Interfacial Crack
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5 - Caontour Plors of C"\.X with Different Modulns Ratios
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